Thermal recovery of colour centres induced in cubic yttria-stabilized zirconia by charged particle irradiations
نویسندگان
چکیده
We have used electron paramagnetic resonance to study the thermal annealing of colour centres induced in cubic yttria-stabilized zirconia by swift electron and heavy ionirradiations. Single crystals were irradiated with 1 or 2-MeV electrons, and 200-MeV I, or 200-MeV Au ions. Electron and ion beams produce the same colour centres: namely i) an F-like centre, ii) the so-called T-centre (Zr in a trigonal oxygen local environment), and iii) a hole center. Isochronal annealing was performed up to 973 K. Isothermal annealing was performed at various temperatures on samples irradiated with 2-MeV electrons. The stability of paramagnetic centres increases with fluence and with a TCR treatment at 1373 K under vacuum prior to the irradiations. Two distinct recovery processes are observed depending on fluence and/or thermal treatment. The single-stage type I process occurs for F-like centres at low fluences in asreceived samples, and is probably linked to electron-hole recombination. T-centres are also annealed according to a single-stage process regardless of fluence. The annealing curves allow one to obtain activation energies for recovery. The two-stage type II process is observed only for the F-like centres in as-received samples, at higher fluences, or in reduced samples. These centres are first annealed in a first stage below 550 K, like in type I, then transform into new paramagnetic centres in a second stage above 550 K. A simple kinetics model is proposed for this process. Complete colour centre bleaching is achieved at about 1000 K. PACS numbers: 61.80.Fe, 61.80.Jh, 61.82.Ms, 76.30.Mi
منابع مشابه
Generation of colour centres in yttria-stabilized zirconia by heavy ion irradiations in the GeV range.
We have studied the colour centre production in yttria-stabilized zirconia (ZrO(2):Y(3 +)) by heavy ion irradiation in the GeV range using on-line UV-visible optical absorption spectroscopy. Experiments were performed with 11.4 MeV amu(-1) (127)Xe, (197)Au, (208)Pb and (238)U ion irradiations at 8 K or room temperature (RT). A broad and asymmetrical absorption band peaked at a wavelength about ...
متن کاملWEAR REESISTANCE OF NANOSTRUCTURED AND CONVENTIONAL YTTRIA-STABILIZED ZIRCONIA COATINGS
Partially stabilized zirconia (PSZ) has been proven to be an excellent candidate as a thermal barrier coating (TBe) for hot sections in, for instance, heat or internal combustion engines and gas turbine parts. The main functions of these coatings are reducing heat losses, reducing fuel consumption, increasing efficiency, and extending durability and life. One of the main problems involved is we...
متن کاملComparative Study of Plasma Sprayed Yittria and Ceria Stabilized Zirconia Properties
Thermal Barrier Coatings are subjected to spallation and destabilization due to hot corrosion.Recently, Ceria Stabilized Zirconia (CSZ)-based TBCs have been intensively investigated for the YSZreplacement because CSZ has a much lower thermal conductivity and a higher expected thermalexpansion coefficient than those of YSZ. In this research, Yttria stabilized zirconia (YSZ) andceria stabilized z...
متن کاملCOMPARISON OF MICROSTRUCTURE AND PHASE EVOLUTION OF YSZ NANOPARTICLES SYNTHESIZED BY CO-PRECIPITATION AND MOLTEN SALT METHODS
This study aimed to compare the phase changes and morphology of yttria-stabilized zirconium oxide powders (YSZ) synthesized by co-precipitation and molten salt methods. Ammonia precipitating agent was used for the synthesis of YSZ powder by co-precipitation method and a mixture of sodium carbonate and potassium carbonate salts was used as a molten salt in the molten salt method. Samples were ch...
متن کاملEffect of Bismuth Oxide on the Microstructure and Electrical Conductivity of Yttria Stabilized Zirconia
Bismuth oxide (Bi2O3)-doped yttria-stabilized zirconia (YSZ) were prepared via the solid state reaction method. X-ray diffraction and electron diffraction spectroscopy results indicate that doping with 2 mol% Bi2O3 and adding 10 mol% yttria result in a stable zirconia cubic phase. Adding Bi2O3 as a dopant increases the density of zirconia to above 96%, while reducing its normal sintering temper...
متن کامل